Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Diagnostics (Basel) ; 13(9)2023 Apr 30.
Article in English | MEDLINE | ID: covidwho-2319023

ABSTRACT

Patients with hypoplastic left heart syndrome who have been palliated with the Fontan procedure are at risk for adverse neurodevelopmental outcomes, lower quality of life, and reduced employability. We describe the methods (including quality assurance and quality control protocols) and challenges of a multi-center observational ancillary study, SVRIII (Single Ventricle Reconstruction Trial) Brain Connectome. Our original goal was to obtain advanced neuroimaging (Diffusion Tensor Imaging and Resting-BOLD) in 140 SVR III participants and 100 healthy controls for brain connectome analyses. Linear regression and mediation statistical methods will be used to analyze associations of brain connectome measures with neurocognitive measures and clinical risk factors. Initial recruitment challenges occurred that were related to difficulties with: (1) coordinating brain MRI for participants already undergoing extensive testing in the parent study, and (2) recruiting healthy control subjects. The COVID-19 pandemic negatively affected enrollment late in the study. Enrollment challenges were addressed by: (1) adding additional study sites, (2) increasing the frequency of meetings with site coordinators, and (3) developing additional healthy control recruitment strategies, including using research registries and advertising the study to community-based groups. Technical challenges that emerged early in the study were related to the acquisition, harmonization, and transfer of neuroimages. These hurdles were successfully overcome with protocol modifications and frequent site visits that involved human and synthetic phantoms.

2.
Eur J Pediatr ; 182(6): 2865-2872, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2298401

ABSTRACT

As new variants of SARS-Co-V 2 have emerged over time and Omicron sub-variants have become dominant, the severity of illness from COVID-19 has declined despite greater transmissibility. There are fewer data on how the history, diagnosis, and clinical characteristics of multisystem inflammatory syndrome in children (MIS-C) have changed with evolution in SARS-CoV-2 variants. We conducted a retrospective cohort study of patients hospitalized with MIS-C between April 2020 and July 2022 in a tertiary referral center. Patients were sorted into Alpha, Delta, and Omicron variant cohorts by date of admission and using national and regional data on variant prevalence. Among 108 patients with MIS-C, significantly more patients had a documented history of COVID-19 in the two months before MIS-C during Omicron (74%) than during Alpha (42%) (p = 0.03). Platelet count and absolute lymphocyte count were lowest during Omicron, without significant differences in other laboratory tests. However, markers of clinical severity, including percentage with ICU admission, length of ICU stay, use of inotropes, or left ventricular dysfunction, did not differ across variants. This study is limited by its small, single-center case series design and by classification of patients into era of variant by admission date rather than genomic testing of SARS- CoV-2 samples.     Conclusion: Antecedent COVID-19 was more often documented in the Omicron than Alpha or Delta eras, but clinical severity of MIS-C was similar across variant eras. What is Known: • There has been a decrease in incidence of MIS-C in children despite widespread infection with new variants of COVID-19. • Data has varied on if the severity of MIS-C has changed over time across different variant infections. What is New: • MIS-C patients were significantly more likely to report a known prior infection with SARS-CoV-2 during Omicron than during Alpha. • There was no difference in severity of MIS-C between the Alpha, Delta, and Omicron cohorts in our patient population.


Subject(s)
COVID-19 , Humans , Child , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19 Testing , Retrospective Studies
5.
J Clin Invest ; 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2228064

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcome were previously correlated with Notch4 expression on regulatory T (Treg) cells, here we show that the Treg cells in MIS-C are destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that MIS-C patients were enriched in rare deleterious variants impacting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Treg cells induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results establish a Notch1-CD22 signaling axis that disrupts Treg cell function in MIS-C and point to distinct immune checkpoints controlled by individual Treg cell Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.

6.
JAMA Netw Open ; 6(1): e2248987, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2172237

ABSTRACT

Importance: Data are limited regarding adverse reactions after COVID-19 vaccination in patients with a history of multisystem inflammatory syndrome in children (MIS-C). The lack of vaccine safety data in this unique population may cause hesitancy and concern for many families and health care professionals. Objective: To describe adverse reactions following COVID-19 vaccination in patients with a history of MIS-C. Design, Setting, and Participants: In this multicenter cross-sectional study including 22 North American centers participating in a National Heart, Lung, and Blood Institute, National Institutes of Health-sponsored study, Long-Term Outcomes After the Multisystem Inflammatory Syndrome in Children (MUSIC), patients with a prior diagnosis of MIS-C who were eligible for COVID-19 vaccination (age ≥5 years; ≥90 days after MIS-C diagnosis) were surveyed between December 13, 2021, and February 18, 2022, regarding COVID-19 vaccination status and adverse reactions. Exposures: COVID-19 vaccination after MIS-C diagnosis. Main Outcomes and Measures: The main outcome was adverse reactions following COVID-19 vaccination. Comparisons were made using the Wilcoxon rank sum test for continuous variables and the χ2 or Fisher exact test for categorical variables. Results: Of 385 vaccine-eligible patients who were surveyed, 185 (48.1%) received at least 1 vaccine dose; 136 of the vaccinated patients (73.5%) were male, and the median age was 12.2 years (IQR, 9.5-14.7 years). Among vaccinated patients, 1 (0.5%) identified as American Indian/Alaska Native, non-Hispanic; 9 (4.9%) as Asian, non-Hispanic; 45 (24.3%) as Black, non-Hispanic; 59 (31.9%) as Hispanic or Latino; 53 (28.6%) as White, non-Hispanic; 2 (1.1%) as multiracial, non-Hispanic; and 2 (1.1%) as other, non-Hispanic; 14 (7.6%) had unknown or undeclared race and ethnicity. The median time from MIS-C diagnosis to first vaccine dose was 9.0 months (IQR, 5.1-11.9 months); 31 patients (16.8%) received 1 dose, 142 (76.8%) received 2 doses, and 12 (6.5%) received 3 doses. Almost all patients received the BNT162b2 vaccine (347 of 351 vaccine doses [98.9%]). Minor adverse reactions were observed in 90 patients (48.6%) and were most often arm soreness (62 patients [33.5%]) and/or fatigue (32 [17.3%]). In 32 patients (17.3%), adverse reactions were treated with medications, most commonly acetaminophen (21 patients [11.4%]) or ibuprofen (11 [5.9%]). Four patients (2.2%) sought medical evaluation, but none required testing or hospitalization. There were no patients with any serious adverse events, including myocarditis or recurrence of MIS-C. Conclusions and Relevance: In this cross-sectional study of patients with a history of MIS-C, no serious adverse events were reported after COVID-19 vaccination. These findings suggest that the safety profile of COVID-19 vaccination administered at least 90 days following MIS-C diagnosis appears to be similar to that in the general population.


Subject(s)
COVID-19 , Connective Tissue Diseases , United States/epidemiology , Child , Humans , Male , Child, Preschool , Female , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Vaccination/adverse effects
8.
J Am Heart Assoc ; 11(20): e025915, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2138319

ABSTRACT

Background Cardiac complications related to COVID-19 in children and adolescents include ventricular dysfunction, myocarditis, coronary artery aneurysm, and bradyarrhythmias, but tachyarrhythmias are less understood. The goal of this study was to evaluate the frequency, characteristics, and outcomes of children and adolescents experiencing tachyarrhythmias while hospitalized for acute severe COVID-19 or multisystem inflammatory syndrome in children. Methods and Results This study involved a case series of 63 patients with tachyarrhythmias reported in a public health surveillance registry of patients aged <21 years hospitalized from March 15, 2020, to December 31, 2021, at 63 US hospitals. Patients with tachyarrhythmias were compared with patients with severe COVID-19-related complications without tachyarrhythmias. Tachyarrhythmias were reported in 22 of 1257 patients (1.8%) with acute COVID-19 and 41 of 2343 (1.7%) patients with multisystem inflammatory syndrome in children. They included supraventricular tachycardia in 28 (44%), accelerated junctional rhythm in 9 (14%), and ventricular tachycardia in 38 (60%); >1 type was reported in 12 (19%). Registry patients with versus without tachyarrhythmia were older (median age, 15.4 [range, 10.4-17.4] versus 10.0 [range, 5.4-14.8] years) and had higher illness severity on hospital admission. Intervention for treatment of tachyarrhythmia was required in 37 (59%) patients and included antiarrhythmic medication (n=31, 49%), electrical cardioversion (n=11, 17%), cardiopulmonary resuscitation (n=8, 13%), and extracorporeal membrane oxygenation (n=9, 14%). Patients with tachyarrhythmias had longer hospital length of stay than those who did not, and 9 (14%) versus 77 (2%) died. Conclusions Tachyarrhythmias were a rare complication of acute severe COVID-19 and multisystem inflammatory syndrome in children and adolescents and were associated with worse clinical outcomes, highlighting the importance of close monitoring, aggressive treatment, and postdischarge care.


Subject(s)
COVID-19 , Tachycardia, Supraventricular , Child , Humans , Adolescent , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Aftercare , Patient Discharge , Hospitalization , Tachycardia, Supraventricular/epidemiology , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/therapy
9.
JAMA Pediatr ; 176(12): 1167-1168, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2074883
10.
Lancet Digit Health ; 4(10): e717-e726, 2022 10.
Article in English | MEDLINE | ID: covidwho-2042291

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a novel disease that was identified during the COVID-19 pandemic and is characterised by systemic inflammation following SARS-CoV-2 infection. Early detection of MIS-C is a challenge given its clinical similarities to Kawasaki disease and other acute febrile childhood illnesses. We aimed to develop and validate an artificial intelligence algorithm that can distinguish among MIS-C, Kawasaki disease, and other similar febrile illnesses and aid in the diagnosis of patients in the emergency department and acute care setting. METHODS: In this retrospective model development and validation study, we developed a deep-learning algorithm called KIDMATCH (Kawasaki Disease vs Multisystem Inflammatory Syndrome in Children) using patient age, the five classic clinical Kawasaki disease signs, and 17 laboratory measurements. All features were prospectively collected at the time of initial evaluation from patients diagnosed with Kawasaki disease or other febrile illness between Jan 1, 2009, and Dec 31, 2019, at Rady Children's Hospital in San Diego (CA, USA). For patients with MIS-C, the same data were collected from patients between May 7, 2020, and July 20, 2021, at Rady Children's Hospital, Connecticut Children's Medical Center in Hartford (CT, USA), and Children's Hospital Los Angeles (CA, USA). We trained a two-stage model consisting of feedforward neural networks to distinguish between patients with MIS-C and those without and then those with Kawasaki disease and other febrile illnesses. After internally validating the algorithm using stratified tenfold cross-validation, we incorporated a conformal prediction framework to tag patients with erroneous data or distribution shifts. We finally externally validated KIDMATCH on patients with MIS-C enrolled between April 22, 2020, and July 21, 2021, from Boston Children's Hospital (MA, USA), Children's National Hospital (Washington, DC, USA), and the CHARMS Study Group consortium of 14 US hospitals. FINDINGS: 1517 patients diagnosed at Rady Children's Hospital between Jan 1, 2009, and June 7, 2021, with MIS-C (n=69), Kawasaki disease (n=775), or other febrile illnesses (n=673) were identified for internal validation, with an additional 16 patients with MIS-C included from Connecticut Children's Medical Center and 50 from Children's Hospital Los Angeles between May 7, 2020, and July 20, 2021. KIDMATCH achieved a median area under the receiver operating characteristic curve during internal validation of 98·8% (IQR 98·0-99·3) in the first stage and 96·0% (95·6-97·2) in the second stage. We externally validated KIDMATCH on 175 patients with MIS-C from Boston Children's Hospital (n=50), Children's National Hospital (n=42), and the CHARMS Study Group consortium of 14 US hospitals (n=83). External validation of KIDMATCH on patients with MIS-C correctly classified 76 of 81 patients (94% accuracy, two rejected by conformal prediction) from 14 hospitals in the CHARMS Study Group consortium, 47 of 49 patients (96% accuracy, one rejected by conformal prediction) from Boston Children's Hospital, and 36 of 40 patients (90% accuracy, two rejected by conformal prediction) from Children's National Hospital. INTERPRETATION: KIDMATCH has the potential to aid front-line clinicians to distinguish between MIS-C, Kawasaki disease, and other similar febrile illnesses to allow prompt treatment and prevent severe complications. FUNDING: US Eunice Kennedy Shriver National Institute of Child Health and Human Development, US National Heart, Lung, and Blood Institute, US Patient-Centered Outcomes Research Institute, US National Library of Medicine, the McCance Foundation, and the Gordon and Marilyn Macklin Foundation.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , Algorithms , Artificial Intelligence , COVID-19/complications , COVID-19/diagnosis , COVID-19 Testing , Child , Humans , Machine Learning , Mucocutaneous Lymph Node Syndrome/diagnosis , Pandemics , Retrospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , United States
11.
JAMA Netw Open ; 5(6): e2217436, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1898503

ABSTRACT

Importance: Public health measures implemented during the COVID-19 pandemic had widespread effects on population behaviors, transmission of infectious diseases, and exposures to environmental pollutants. This provided an opportunity to study how these factors potentially influenced the incidence of Kawasaki disease (KD), a self-limited pediatric vasculitis of unknown etiology. Objectives: To examine the change in KD incidence across the United States and evaluate whether public health measures affected the prevalence of KD. Design, Setting, and Participants: This multicenter cohort study included consecutive, unselected patients with KD who were diagnosed between January 1, 2018, and December 31, 2020 (multicenter cohort with 28 pediatric centers), and a detailed analysis of patients with KD who were diagnosed between January 1, 2002, and November 15, 2021 (Rady Children's Hospital San Diego [RCHSD]). Main Outcomes and Measures: For the multicenter cohort, the date of fever onset for each patient with KD was collected. For RCHSD, detailed demographic and clinical data as well as publicly available, anonymized mobile phone data and median household income by census block group were collected. The study hypothesis was that public health measures undertaken during the pandemic would reduce exposure to the airborne trigger(s) of KD and that communities with high shelter-in-place compliance would experience the greatest decrease in KD incidence. Results: A total of 2461 KD cases were included in the multicenter study (2018: 894; 2019: 905; 2020: 646), and 1461 cases (median [IQR] age, 2.8 years [1.4-4.9 years]; 900 [61.6%] males; 220 [15.1%] Asian, 512 [35.0%] Hispanic, and 338 [23.1%] White children) from RCHSD between 2002 and 2021 were also included. The 28.2% decline in KD cases nationally during 2020 (646 cases) compared with 2018 (894 cases) and 2019 (905 cases) was uneven across the United States. For RCHSD, there was a disproportionate decline in KD cases in 2020 to 2021 compared with the mean (SD) number of cases in earlier years for children aged 1 to 5 years (22 vs 44.9 [9.9]; P = .02), male children (21 vs 47.6 [10.0]; P = .01), and Asian children (4 vs 11.8 [4.4]; P = .046). Mobility data did not suggest that shelter-in-place measures were associated with the number of KD cases. Clinical features including strawberry tongue, enlarged cervical lymph node, and subacute periungual desquamation were decreased during 2020 compared with the baseline period (strawberry tongue: 39% vs 63%; P = .04; enlarged lymph node: 21% vs 32%; P = .09; periungual desquamation: 47% vs 58%; P = .16). School closures, masking mandates, decreased ambient pollution, and decreased circulation of respiratory viruses all overlapped to different extents with the period of decreased KD cases. KD in San Diego rebounded in the spring of 2021, coincident with lifting of mask mandates. Conclusions and Relevance: In this study of epidemiological and clinical features of KD during the COVID-19 pandemic in the United States, KD cases fell and remained low during the period of masking and school closure. Mobility data indicated that differential intensity of sheltering in place was not associated with KD incidence. These findings suggest that social behavior is associated with exposure to the agent(s) that trigger KD and are consistent with a respiratory portal of entry for the agent(s).


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Fever/epidemiology , Humans , Male , Mucocutaneous Lymph Node Syndrome/epidemiology , Pandemics , United States/epidemiology
12.
Eur J Pediatr ; 181(7): 2879-2883, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1813679

ABSTRACT

Myocarditis is a rare complication of the COVID-19 mRNA vaccine. We previously reported a case series of 15 adolescents with vaccine-associated myocarditis, 87% of whom had abnormalities on initial cardiac magnetic resonance (CMR), including late gadolinium enhancement (LGE) in 80%. We performed follow-up CMRs to determine the trajectory of myocardial recovery and better understand the natural history of vaccine-associated myocarditis. Case series of patients age < 19 years admitted to Boston Children's Hospital with acute vaccine-associated myocarditis following the BNT162b2 vaccine who had abnormal CMR at the time of initial presentation, and underwent follow-up testing. CMR assessment included left ventricular (LV) ejection fraction, T2-weighted myocardial imaging, LV global native T1, LV global T2, extracellular volume (ECV), and late gadolinium enhancement (LGE). Ten patients (9 male, median age 15 years) with vaccine-associated myocarditis underwent follow-up CMR at a median of 92 days (range 76-119) after hospital discharge. LGE was persistent in 80% of patients, though improved from prior in all cases. Two patients (20%) had abnormal LV global T1 at presentation, which normalized on follow-up. ECV decreased between acute presentation and follow-up in 6/10 patients; it remained elevated at follow-up in 1 patient and borderline in 3 patients. CONCLUSION: CMR performed ~3 months after admission for COVID-19 vaccine-associated myocarditis showed improvement of LGE in all patients, but persistent in the majority. Follow-up CMR 6-12 months after acute episode should be considered to better understand the long-term cardiac risks. WHAT IS KNOWN: • Myocarditis is a rare side effect of COVID-19 mRNA vaccine. •Late gadolinium enhancement is present on most cardiac magnetic resonance at the time of acute presentation. WHAT IS NEW: •Late gadolinium enhancement improved on all repeat cardiac magnetic resonance at 3-month follow-up. •Most patients still had a small amount of late gadolinium enhancement, the clinical significance of which is yet to be determined.


Subject(s)
COVID-19 , Myocarditis , Adolescent , Adult , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Contrast Media/adverse effects , Follow-Up Studies , Gadolinium/adverse effects , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Myocarditis/diagnostic imaging , Myocarditis/etiology , Myocardium/pathology , Predictive Value of Tests , Vaccines, Synthetic , Ventricular Function, Left , Young Adult , mRNA Vaccines
13.
Circulation ; 145(5): 345-356, 2022 02.
Article in English | MEDLINE | ID: covidwho-1807751

ABSTRACT

BACKGROUND: Understanding the clinical course and short-term outcomes of suspected myocarditis after the coronavirus disease 2019 (COVID-19) vaccination has important public health implications in the decision to vaccinate youth. METHODS: We retrospectively collected data on patients <21 years old presenting before July 4, 2021, with suspected myocarditis within 30 days of COVID-19 vaccination. Lake Louise criteria were used for cardiac MRI findings. Myocarditis cases were classified as confirmed or probable on the basis of the Centers for Disease Control and Prevention definitions. RESULTS: We report on 139 adolescents and young adults with 140 episodes of suspected myocarditis (49 confirmed, 91 probable) at 26 centers. Most patients were male (n=126, 90.6%) and White (n=92, 66.2%); 29 (20.9%) were Hispanic; and the median age was 15.8 years (range, 12.1-20.3; interquartile range [IQR], 14.5-17.0). Suspected myocarditis occurred in 136 patients (97.8%) after the mRNA vaccine, with 131 (94.2%) after the Pfizer-BioNTech vaccine; 128 (91.4%) occurred after the second dose. Symptoms started at a median of 2 days (range, 0-22; IQR, 1-3) after vaccination. The most common symptom was chest pain (99.3%). Patients were treated with nonsteroidal anti-inflammatory drugs (81.3%), intravenous immunoglobulin (21.6%), glucocorticoids (21.6%), colchicine (7.9%), or no anti-inflammatory therapies (8.6%). Twenty-six patients (18.7%) were in the intensive care unit, 2 were treated with inotropic/vasoactive support, and none required extracorporeal membrane oxygenation or died. Median hospital stay was 2 days (range, 0-10; IQR, 2-3). All patients had elevated troponin I (n=111, 8.12 ng/mL; IQR, 3.50-15.90) or T (n=28, 0.61 ng/mL; IQR, 0.25-1.30); 69.8% had abnormal ECGs and arrhythmias (7 with nonsustained ventricular tachycardia); and 18.7% had left ventricular ejection fraction <55% on echocardiogram. Of 97 patients who underwent cardiac MRI at a median 5 days (range, 0-88; IQR, 3-17) from symptom onset, 75 (77.3%) had abnormal findings: 74 (76.3%) had late gadolinium enhancement, 54 (55.7%) had myocardial edema, and 49 (50.5%) met Lake Louise criteria. Among 26 patients with left ventricular ejection fraction <55% on echocardiogram, all with follow-up had normalized function (n=25). CONCLUSIONS: Most cases of suspected COVID-19 vaccine myocarditis occurring in persons <21 years have a mild clinical course with rapid resolution of symptoms. Abnormal findings on cardiac MRI were frequent. Future studies should evaluate risk factors, mechanisms, and long-term outcomes.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Myocarditis/diagnostic imaging , Myocarditis/physiopathology , Adolescent , Child , Electrocardiography/methods , Female , Humans , Magnetic Resonance Imaging, Cine/methods , Male , Myocarditis/blood , Myocarditis/etiology , Retrospective Studies , Time Factors , Young Adult
14.
NPJ Digit Med ; 5(1): 9, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1635827

ABSTRACT

During the critical early stages of an emerging pandemic, limited availability of pathogen-specific testing can severely inhibit individualized risk screening and pandemic tracking. Standard clinical laboratory tests offer a widely available complementary data source for first-line risk screening and pandemic surveillance. Here, we propose an integrated framework for developing clinical-laboratory indicators for novel pandemics that combines population-level and individual-level analyses. We apply this framework to 7,520,834 clinical laboratory tests recorded over five years and find clinical-lab-test combinations that are strongly associated with SARS-CoV-2 PCR test results and Multisystem Inflammatory Syndrome in Children (MIS-C) diagnoses: Interleukin-related tests (e.g. IL4, IL10) were most strongly associated with SARS-CoV-2 infection and MIS-C, while other more widely available tests (ferritin, D-dimer, fibrinogen, alanine transaminase, and C-reactive protein) also had strong associations. When novel pandemics emerge, this framework can be used to identify specific combinations of clinical laboratory tests for public health tracking and first-line individualized risk screening.

15.
Vaccines (Basel) ; 10(1)2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1580345

ABSTRACT

A 12-year-old male was presented to the hospital with acute encephalopathy, headache, vomiting, diarrhea, and elevated troponin after recent COVID-19 vaccination. Two days prior to admission and before symptom onset, he received the second dose of the Pfizer-BioNTech COVID-19 vaccine. Symptoms developed within 24 h with worsening neurologic symptoms, necessitating admission to the pediatric intensive care unit. Brain magnetic resonance imaging within 16 h of admission revealed a cytotoxic splenial lesion of the corpus callosum (CLOCC). Nineteen days prior to admission, he developed erythema migrans, and completed an amoxicillin treatment course for clinical Lyme disease. However, Lyme antibody titers were negative on admission and nine days later, making active Lyme disease an unlikely explanation for his presentation to hospital. An extensive workup for other etiologies on cerebrospinal fluid and blood samples was negative, including infectious and autoimmune causes and known immune deficiencies. Three weeks after hospital discharge, all of his symptoms had dissipated, and he had a normal neurologic exam. Our report highlights a potential role of mRNA vaccine-induced immunity leading to MIS-C-like symptoms with cardiac involvement and a CLOCC in a recently vaccinated child and the complexity of establishing a causal association with vaccination. The child recovered without receipt of immune modulatory treatment.

17.
Am Heart J ; 243: 43-53, 2022 01.
Article in English | MEDLINE | ID: covidwho-1482402

ABSTRACT

BACKGROUND: The Long-terM OUtcomes after the Multisystem Inflammatory Syndrome In Children (MUSIC) study aims to characterize the frequency and time course of acute and long-term cardiac and non-cardiac sequelae in multisystem inflammatory syndrome in children associated with COVID-19 (MIS-C), which are currently poorly understood. METHODS: This multicenter observational cohort study will enroll at least 600 patients <21 years old who meet the Centers for Disease Control and Prevention case definition of MIS-C across multiple North American centers over 2 years. The study will collect detailed hospital and follow-up data for up to 5 years, and optional genetic testing. Cardiac imaging at specific time points includes standardized echocardiographic assessment (all participants) and cardiac magnetic resonance imaging (CMR) in those with left ventricular ejection fraction (LVEF) <45% during the acute illness. The primary outcomes are the worst LVEF and the highest coronary artery z-score of the left anterior descending or right coronary artery. Other outcomes include occurrence and course of non-cardiac organ dysfunction, inflammation, and major medical events. Independent adjudication of cases will classify participants as definite, possible, or not MIS-C. Analysis of the outcomes will include descriptive statistics and regression analysis with stratification by definite or possible MIS-C. The MUSIC study will provide phenotypic data to support basic and translational research studies. CONCLUSION: The MUSIC study, with the largest cohort of MIS-C patients and the longest follow-up period to date, will make an important contribution to our understanding of the acute cardiac and non-cardiac manifestations of MIS-C and the long-term effects of this public health emergency.


Subject(s)
COVID-19/complications , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Systemic Inflammatory Response Syndrome , Adult , Child , Humans , National Heart, Lung, and Blood Institute (U.S.) , SARS-CoV-2 , Stroke Volume , United States , Ventricular Function, Left , Young Adult
18.
Pediatr Blood Cancer ; 68(12): e29355, 2021 12.
Article in English | MEDLINE | ID: covidwho-1414402

ABSTRACT

OBJECTIVE: To characterize viscoelastic testing profiles of children with multisystem inflammatory syndrome in children (MIS-C). METHODS: This single-center retrospective review included 30 patients diagnosed with MIS-C from March 1 to September 1, 2020. Thromboelastography (TEG) with platelet mapping was performed in 19 (63%) patients and compared to age- and sex-matched controls prior to cardiac surgery. Relationships between TEG parameters and inflammatory markers were assessed using correlation. RESULTS: Patients with MIS-C had abnormal TEG results compared to controls, including decreased kinetic (K) time (1.1 vs. 1.7 minutes, p < .01), increased alpha angle (75.0° vs. 65.7°, p < .01), increased maximum amplitude (70.8 vs. 58.3 mm, p < .01), and decreased lysis in 30 minutes (Ly30) (1.1% vs. 3.7%, p = .03); consistent with increased clot formation rate and strength, and reduced fibrinolysis. TEG maximum amplitude was moderately correlated with erythrocyte sedimentation rate (ESR) (r = 0.60, p = .02), initial platelet count (r = 0.67, p < .01), and peak platelet count (r = 0.51, p = .03). TEG alpha angle was moderately correlated with peak platelet count (r = 0.54, p = .02). Seventeen (57%) patients received aspirin (ASA) and anticoagulation, five (17%) received only ASA, and three (10%) received only anticoagulation. No patients had a symptomatic thrombotic event. Six (20%) patients had a bleeding event, none of which was major. CONCLUSIONS: Patients with MIS-C had evidence of hypercoagulability on TEG. Increased ESR and platelets were associated with higher clot strength. Patients were prophylactically treated with ASA or anticoagulation with no symptomatic thrombosis or major bleeding. Further multicenter study is required to characterize the rate of thrombosis and optimal thromboprophylaxis algorithm in this patient population.


Subject(s)
Blood Coagulation , COVID-19/complications , Systemic Inflammatory Response Syndrome/blood , Thrombophilia/blood , Adolescent , Anticoagulants/therapeutic use , Aspirin/therapeutic use , Blood Coagulation/drug effects , Blood Platelets/drug effects , COVID-19/blood , Child , Child, Preschool , Female , Humans , Male , Retrospective Studies , Systemic Inflammatory Response Syndrome/drug therapy , Thrombelastography , Thrombophilia/drug therapy , COVID-19 Drug Treatment
19.
EClinicalMedicine ; 40: 101112, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1377702

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. METHODS: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21 years old hospitalized with COVID-19-related illness admitted between 15 March 2020 and 31 December 2020. We compared prevalence of assigned MIS-C labels and clinical features among clusters, followed by recursive feature elimination to identify characteristics of potentially misclassified MIS-C-labeled patients. FINDINGS: Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients (N = 498; 92% labeled MIS-C) were mostly previously healthy (71%), with mean age 7·2 ± 0·4 years, predominant cardiovascular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-2 PCR negative (60%). Cluster 2 patients (N = 445; 27% labeled MIS-C) frequently had pre-existing conditions (79%, with 39% respiratory), were similarly 7·4 ± 2·1 years old, and commonly had chest radiograph infiltrates (79%) and positive PCR testing (90%). Cluster 3 patients (N = 583; 19% labeled MIS-C) were younger (2·8 ± 2·0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients. INTERPRETATION: Using a data driven, unsupervised approach, we identified features that cluster patients into a group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C.

20.
JAMA Cardiol ; 6(12): 1446-1450, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1349214

ABSTRACT

Importance: The BNT162b2 (Pfizer-BioNTech) messenger RNA COVID-19 vaccine was authorized on May 10, 2021, for emergency use in children aged 12 years and older. Initial reports showed that the vaccine was well tolerated without serious adverse events; however, cases of myocarditis have been reported since approval. Objective: To review results of comprehensive cardiac imaging in children with myocarditis after COVID-19 vaccine. Design, Setting, and Participants: This study was a case series of children younger than 19 years hospitalized with myocarditis within 30 days of BNT162b2 messenger RNA COVID-19 vaccine. The setting was a single-center pediatric referral facility, and admissions occurred between May 1 and July 15, 2021. Main Outcomes and Measures: All patients underwent cardiac evaluation including an electrocardiogram, echocardiogram, and cardiac magnetic resonance imaging. Results: Fifteen patients (14 male patients [93%]; median age, 15 years [range, 12-18 years]) were hospitalized for management of myocarditis after receiving the BNT162b2 (Pfizer) vaccine. Symptoms started 1 to 6 days after receipt of the vaccine and included chest pain in 15 patients (100%), fever in 10 patients (67%), myalgia in 8 patients (53%), and headache in 6 patients (40%). Troponin levels were elevated in all patients at admission (median, 0.25 ng/mL [range, 0.08-3.15 ng/mL]) and peaked 0.1 to 2.3 days after admission. By echocardiographic examination, decreased left ventricular (LV) ejection fraction (EF) was present in 3 patients (20%), and abnormal global longitudinal or circumferential strain was present in 5 patients (33%). No patient had a pericardial effusion. Cardiac magnetic resonance imaging findings were consistent with myocarditis in 13 patients (87%) including late gadolinium enhancement in 12 patients (80%), regional hyperintensity on T2-weighted imaging in 2 patients (13%), elevated extracellular volume fraction in 3 patients (20%), and elevated LV global native T1 in 2 patients (20%). No patient required intensive care unit admission, and median hospital length of stay was 2 days (range 1-5). At follow-up 1 to 13 days after hospital discharge, 11 patients (73%) had resolution of symptoms. One patient (7%) had persistent borderline low LV systolic function on echocardiogram (EF 54%). Troponin levels remained mildly elevated in 3 patients (20%). One patient (7%) had nonsustained ventricular tachycardia on ambulatory monitor. Conclusions and Relevance: In this small case series study, myocarditis was diagnosed in children after COVID-19 vaccination, most commonly in boys after the second dose. In this case series, in short-term follow-up, patients were mildly affected. The long-term risks associated with postvaccination myocarditis remain unknown. Larger studies with longer follow-up are needed to inform recommendations for COVID-19 vaccination in this population.


Subject(s)
BNT162 Vaccine/adverse effects , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Myocarditis/etiology , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Cardiac Imaging Techniques/methods , Child , Echocardiography/methods , Electrocardiography/methods , Female , Follow-Up Studies , Heart/diagnostic imaging , Heart/physiopathology , Humans , Length of Stay/statistics & numerical data , Magnetic Resonance Imaging/methods , Male , Myocarditis/diagnosis , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Stroke Volume/physiology , Troponin/blood , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL